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Many different random-walk models of dispersion in inhomogeneous or unsteady 
turbulence have been proposed and several criteria have emerged to distinguish good 
models from bad. In this paper the relationships between the various criteria are 
examined for a very general class of models and it is shown that most of the criteria 
are equivalent. It is also shown how a model can be designed to satisfy these criteria 
exactly and to be consistent with inertial-subrange theory. Some examples of models 
that obey the criteria are described. As an illustration some calculations of dispersion 
in free-convective conditions are presented. 

1. Introduction 
Stochastic or random-walk models of particle motions have proved to be a 

successful and flexible tool in the investigation of the dispersion of passive tracers 
in high-Reynolds-number turbulence (Reid 1979; Wilson, Thurtell & Kidd 1981 a, c ;  
Ley 1982; Ley & Thomson 1983; Legg 1983; de Baas, van Dop & Nieuwstadt 1986; 
Thomson 1986a). They are particularly suited to the calculation of dispersion in 
complex flows, where many other techniques (e.g. similarity theory, Taylor’s 1921 
statistical theory or eddy-diffusivity techniques) are inappropriate or invalid. They 
can take account of inhomogeneities, unsteadiness or non-Gaussianity in the turbu- 
lent velocity distribution and, unlike eddy-diffusivity methods, can be applied close 
to a source where the travel time of particles is much less than the Lagrangian 
timescale. Being Lagrangian in concept, they provide a more natural approach than 
high-order closure models and, as shown below, are able to represent exactly the 
advection terms which are parametrized in high-order closure models. 

The basis of the approach is to regard the turbulent flow in question as a member 
of a statistical ensemble of similar flows with identical external conditions (see e.g. 
Monin & Yaglom 1971, $3.2). To calculate the ensemble mean concentration field, 
the trajectories of a representative sample of tracer particles, chosen from all tracer 
particles in the ensemble of flows, are simulated numerically. Provided the Reynolds 
number is sufficiently large, as for example in the atmosphere, the effect of molecular 
diffusion on the ensemble mean concentration field is very small (Monin & Yaglom 
1971, $10.2) ; hence molecular diffusion can be neglected and the tracer particles can 
be assumed to travel at the local velocity of the fluid, i.e. as if they are fluid elements. 
Because each particle moves independently of the others, these models are called 
‘ one-particle ’ models. 

In most models proposed to date the position and velocity of a fluid element or 
particle of tracer, considered as a single entity, is assumed to evolve in a Markovian 
manner. This is a plausible assumption because, in high-Reynolds-number flows, the 
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Lagrangian acceleration correlation is small over time lags much longer than the 
Kolmogorov timescale T,, (Monin & Yaglom 1975, p. 370) and so the changes in a 
particle’s velocity in two successive intervals At (where At is much larger than T,,, but 
small enough that the frequency 1/At lies in the inertial subrange) are nearly 
independent. Of course they cannot be completely independent or the variance of the 
particle velocities would grow indefinitely. In  making the Markovian assumption it 
is assumed that this dependence can be accounted for by allowing the velocity 
increments to depend on the particle’s velocity and (in inhomogeneous turbulence) 
on the position of the particle. A consequence of the Markovian assumption is that 
the model cannot correctly represent the details of a particle’s motion over timescales 
of order T,,. Although there is no reason to think the Markovian assumption is exact, 
it seems reasonable that the acceleration of a particle, with its very short correlation 
timescale, should have properties that, given the particles’ velocity, are determined 
by local conditions. In  contrast the velocity of a particle, with its timescale 
determined by the largest eddies, is not determined locally and so the position of a 
particle cannot in general be assumed to be a Markov process. 

In  inhomogeneous or non-stationary conditions it is not immediately clear how 
such a model should be formulated. In previous studies many different model 
formulations have been tried (e.g. Wilson, Thurtell & Kidd 1981 b;  Legg & Raupach 
1982; Wilson, Legg & Thomson 1983; Janicke 1983; Ley & Thomson 1983; van Dop, 
Nieuwstadt 6 Hunt 1985; de Baas et al. 1986; Thomson 1984,1986~) and it has been 
shown that the results from some models can be seriously in error. A number of 
different criteria have emerged to distinguish between good and bad models. The four 
main criteria that have been used are: Does the model give the right steady-state 
distribution of particles in phase space? (Janicke 1983; Thomson 1984, 1986~);  Is 
the small-time behaviour of the velocity distribution of the particles from a point 
source correct ? (van Dop et al. 1985) ; Are the Eulerian equations derived from the 
model compatible with the true Eulerian equations? (van Dop et ul. 1985) ; and Does 
the model reduce to a diffusion-equation model as the Lagrangian timescale tends 
to zero 1 (Durbin 1983,1984). A further criterion, which has been raised in connection 
with ‘two-particle’ models but which is also relevant to one-particle models, is: Are 
the forward and reverse formulations of the dispersion consistent ? (Egbert & Baker 
1984). 

In  this paper the relationships between and the consistency of these criteria are 
investigated. It is shown that a generalized version of the first condition above is 
sufficient to ensure that all the other criteria are satisfied and indeed is equivalent 
to most of them. This condition is not sufficient to determine the formulation of the 
model uniquely and ways of removing the remaining indeterminacy are discussed. 
Finally some simple examples of such models are presented. 

Although ‘ two-particle ’ models are not discussed, many of the ideas presented here 
are also applicable to such models. Two-particle models can be even more sensitive 
to the model formulation than one-particle models (Sawford 1983; Thomson 19863) 
and so their correct formulation is even more important. 

In  much of the following it is not assumed that the density of the fluid is constant. 
This is done because it enables some insight to be achieved into why most of the 
criteria are equivalent and because the theory generalizes to variable-density flows 
quite naturally. Although some of the formulae appear more complex than they 
would otherwise, this additional complexity is more apparent than real; no real 
simplifications would be possible by restricting discussion to constant-density flows. 
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2. Basic assumptions 
2.1 . Notation 

In order to achieve our objective, it is necessary to introduce some notation. x( t )  and 
u(t) will be used to denote the position and velocity of a fluid element or particle of 
tracer at time t .  Cartesian components will be denoted by superscripts and the 
Einstein summation convention will be used. The density function of the phase-space 
(i.e. (x,u)-space) distribution of all the particles of tracer in the ensemble of flows 
under consideration will be denoted by g(x ,u , t ) ;  the density function of the 
distribution of the fluid elements will be denoted by ga(x, u, t ) .  Characteristic 
functions will be denoted by A, e.g. 

#(x, 0, t )  = g(x, u, t )  exp (iu-0) d3u. s 
u,(x, t ) ,  p(x,  t )  and c(x, t )  will be used to denote the Eulerian velocity, density and 
concentration fields respectively in a particular realization of the flow and the 
ensemble average of an Eulerian quantity will be indicated by angled brackets, ( ). 
g and ga will be normalized so that 

c c 

This normalization has an advantage over the normalization 

sgd3ud3x = ~gadsudSx = 1 

in that it can be applied in unbounded flows ; however it means that g and ga are not 
strictly probability density functions in phase space. It can easily be seen that, for 
any functionf(x, u, t ) ,  jgfd3u equals (c(x, t ) )  times the average value off for particles 
of tracer at x. This average value is equal to the concentration-weighted 
Eulerian average value (cf(x,  u,, t ) ) / ( c )  (this is essentially the result derived by 
van Dop et al. 1985, Appendix A). Hence jgfd3u = ( c f (x ,uE, t ) )  and, similarly, 
JgafdSu = (pf(x, u,, t ) ) .  In  particular 

# = ( c  exp (iuE*O)) and #, = ( p  exp (iuE*O)). 

g&, u, t ) / ( p ( x ,  t ) )  is the density-weighted probability density function (p.d.f.) of the 
Eulerian velocity at (x, t ) .  We will call the turbulence Gaussian if ga has the form 

for some U ( x , t )  and V(x , t ) .  It can easily be seen that U =  (pu,)/(p) and 
VJ = (p(uL- ub) (u&- i Y ) ) / ( p ) .  U and Y will be used to stand for these quantities 
even in non-Gaussian turbulence. An overbar will be used to denote an average over 
all particles of tracer in the ensemble of flows. 

2.2. Statistical theory 
Consider a particular realization w of the flow and consider the fluid element which 
is at position y at time 8. Let p"(x, t 1 y ,  8) be the p.d.f. of the position of the fluid 
element at time t (since we are neglecting molecular diffusion this will be a delta 
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function). If the source strength in this realization is S"(x, t) then, because the tracer 
particles move as if they are fluid elements, the concentration of tracer a t  time t is 

C(X, t )  = p"(x, t 1 y,  S )  A""@, S )  d3yds. JS<, 
Now suppose the source strength in each member of the ensemble is proportional to  
p (i.e. P ( x ,  t )  = S(x, t)p(x, t)/<p(x, t ) ) ,  S being the same in each realization) so that 
the source simply 'marks' a certain fraction of the fluid elements passing by. Taking 
the ensemble average of (1) yields 

(c(x, t ) )  = s,<, p(x, t IY, S)S(Y, 4 d3Y d 4  

where p(x, t I y ,  s) d3x = (p"(x, t I y ,  s)p(y,  s)) d3x/(p(y, s)) is the probability that a 
fluid element (chosen at random from all the fluid elements in the ensemble of flows) 
is, at time t ,  in the elemental volume d3x centred on x given that it is at position 
y a t  time s (the fluid element is more likely to come from a realization where p(y, s) 
is large than from one where i t  is small). 

Similar results hold in phase space. Again consider the fluid element that is a t  
position y at time s in a particular realization w of the flow and let p"(x, u, t 1 y,  s) be 
the p.d.f. of the position and velocity of the fluid element a t  time t .  Then the 
concentration of tracer in phase space in the realization w is 

p"(x, u, t I y ,  8 )  S"(y, s) d3y ds. 6,, 
In  the phase-space calculation we can consider sources whose strength depends on 
the velocity a t  the source (e.g. a conditional release, that  is a source that switches 
on when the velocity at the source satisfies certain constraints). Suppose 
P(x, t )  = S(x, u,(x, t ) ,  t)p(x, t)/(p(x, t ) )  and let ( ), denote an average over the 
subensemble of realizations in which uE(y, s) = u. Then 

where 
p(x,u, t ly ,  u,8)d3xd3u = (p"(x,u, t l~,s)pdy,  s)),d3~d3u/(pdy,s)), 

is the probability that a fluid element, chosen at random from all the fluid elements 
in the ensemble of flows, is, a t  time t ,  in the elemental volume d3x d3u of phase space 
centred on (x, u)  given that i t  is at (y, u )  at time s. Averaging (3) over the whole 
ensemble yields 

Hence the ensemble average of (2) is 

This equation indicates how the phase-space density of tracer particles, g, is related 
to the source of particles in phase space, g,S / (p ) ,  by the transition probability 
density p(x, u, t 1 y ,  8,s). 
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2.3. Markovian stochastic models 
As indicated in the Introduction we shall consider models in which, for a fluid element 
chosen at random from all the fluid elements in the ensemble of flows, the evolution 
of (x, u)  is a Markov process. The mathematics of Markov processes is well understood 
and several standard results concerning such processes are quoted below. These 
results can be found in e.g. Arnold (1974), Gihman & Skorohod (1974, 1975, 1979) 
or Schuss (1980). Let us also assume that x and u are continuous functions oft  with 
dxldt = u and that the process satisfies a mild regularity condition, namely that it 
has the same local structure as a process with independent increments. With these 
assumptions the evolution of (x, u)  can be described by the stochastic differential 
equations 

dut = a'(x, u, t) dt + btj(x, u, t)  dt*, (4a) 

dx = udt, (4b) 

where a and b are functions of x, u and t and the dti are the increments of a 
vector-valued Wiener process with independent components (see Appendix A). The 
increments dg' are Gaussian with mean zero and variance dt; increments dgt and dgj 
occurring at  different times, or at the same time with i =l= j, are independent. €W will 
be used to denote Pkbik. Although B does not determine b, it  does determine the 
distribution of the random increments bifd"; hence the specification of u and B is 
sufficient to determine the way the particles move. A sample of the trajectories can 
be calculated numerically by replacing the infinitesimal increments du, dx, dt and 
dc by finite increments Au, Ax, At and AC. 

It is of interest that the random increments in (4) must be Gaussian (see Appendix 
A). This has implications for a previously proposed model (Thomson 1984) which 
requires non-Gaussian forcing in order to satisfy the criteria mentioned in the 
Introduction. Such a model must either be non-existent (in the sense that no random 
forcing exists with the required moments) or have discontinuous phase-space 
trajectories. In many cases it is the former that is the case. For example consider 
inhomogeneous Gaussian turbulence in one dimension with no mean flow. The model 
in question (Thomson 1984, $3) requires the first three moments of the random 
increments to be O(dt) with higher moments O(dt2). Now any random variable X must 
satisfy (X3)e < pF (Feller 1966, p. 151). Hence there is no random forcing with the 
required moments. In  some non-Gaussian cases the situation can be even worse with 
the model requiring increments with negative variance (de Baas et al. 1986). Of course 
for a particular finite value of At it may be possible to choose the distribution of the 
random increments in order to satisfy the criteria at least approximately. The model 
has been used successfully in this way by a number of authors (e.g. Thomson 1984; 
de Baas et al. 1986). However such a model is difficult to analyse and is rather 
unsatisfactory mathematically because the length of the time step At plays an 
essential role and the well-mixed condition is normally only satisfied approximately. 

In  manipulating (4) it must be remembered that (dtg)2 is of order dt and so cannot 
be neglected in comparison with dt. A consequence of this is that the derivative of 
a given function of the position and velocity of a particle is not given by the usual 
'function of a function' rule, but by It8's formula 
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Equation (4) implies that, away from any sources, g satisfies 

This is called the forward Kolmogorov or Fokkel--Plank equation for the system (4). 
Equation (5) shows that the flux of tracer in the x6 direction, u i g ,  and that in the 
ui direction, d g - a ( l P g ) / a u j ,  together balance the rate of change of the phase-space 
density g .  Equation (5) is, of course, also satisfied by p ( x ,  u,t Iy, u, s) for t > s. 
p ( x ,  u, t I y ,  n, s) also satisfies the backward Kolmogorov equation 

for t > s. 
Equation (5) can be written in the form 

where, for fixed x ,  $x is an operator that maps g (considered as a function of u) to 
a new function +Jg) of u. For many of the arguments in 53 below it is only assumed 
that the evolution equation for g has the form (7) and that the particles in the model 
move independently (which implies that $x is a linear operator). A consequence of 
this is that many of the results in $3 are applicable to more general models than (4), 
such as the models with skew forcing discussed above (when they exist) and the model 
of Smith (1984). In  Smith's model the particle velocities do not change continuously 
but in discrete jumps which occur at random times. In terms of characteristic 
functions, (7) can be expressed as 

where $x maps g to j + J g )  exp (iu 0) d3u. 
For the arguments that follow it is necessary to make a mild assumption about 

the behaviour of g and ga as lul+ co. Consider an expression consisting of g ,  ga or a 
derivative of g or ga, multiplied by a number of terms, each term being a component 
of u,  a, B or a derivative of a or B. It is assumed that g and ga tend to zero sufficiently 
rapidly as IuI + co so that the integral of the expression over u-space exists. 

3. Five criteria for the selection of stochastic models of particle trajectories 
3.1. The well-mixed cond i t ion  

The first criterion that will be discussed is the following: If  the particles of tracer are 
initially well-mixed (i.e. g proportional to ga)  will they remain so ? This is a generalized 
form of the steady-state criterion mentioned in the Introduction and is, unlike the 
steady-state criterion, applicable to non-stationary situations. It will be referred to 
as the well-mixed condition. 

For the model (4) to satisfy the well-mixed condition it is necessary and sufficient 
that g = ga should satisfy (5). This leads to the condition 

a 
a ig ,  = -((B"'g,)+@(x,u,t) ,  auj 
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where 4 mtisfies 

From (9a )  and the assumed behaviour of ga as lul+m it  follows that the integral 
over u-space of a component of 4 times components of u, a, B and their derivatives 
must exist. In particular 

#+O as Iu(+m. (10) 

In terms of G, the well-mixed condition can be expressed as 

3.2. The small-time behaviour of the velocity distribution of particles from a point 
source 

Consider now the behaviour of the velocity distribution of particles from an 
instantaneous point source at (x,, t,). The source strength will be assumed propor- 
tional to p(x,, t,), i.e. the source simply marks the fluid elements aa they pass through 
(xs , ts) .  The density function of the velocity distribution of these particles will be 
denoted by h(u, t ) .  In  terms of g, 

h(u, t )  = g(x, U,  t )  dSx (c(x, t ) )  dax. I il 
Integrating (8) and noting that (c(x, t ) )  dSx is independent of t yields 

A t  t = t,, Q is zero except at x = x, and so GX can be replaced by GXs. Hence, using 
the linearity of GxS, 

($)ts = &xs(4(t t , ) ) ,  

the subscript t, indicating that &/at is evaluated at time t,. Initially h is identical 
with the velocity distribution of the fluid elements at the source and so 

i(8, ts )  = fia,Cxs, 8, t s ) / ( ~ ( x s ,  t s ) ) .  

Hence, using again the linearity of GXs, 

A t  small times however we know the true behaviour of the particle velocities: 

Hence we can calculate the true evolution of 6. By definition 6 = exp (iu-8) and so 

a6 du 
at dt 
-- - i8.- exp (iu.8). 
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Now the number of particles of tracer in a particular flow realization is proportional 
to p(x,, t , ) .  Hence, using (13)  

Applying continuity, i?p/at + V -  (puE) = 0, yields 

Equations (12) and (14) show that for the velocity distribution of particles from 
a point source to  behave correctly at small times, it is necessary and sufficient that 

at the source. Hence we see that requiring the correct small-time behaviour of the 
velocity distribution of particles from a point source is equivalent to the well-mixed 
condition (1 1). 

3.3. The requirement of compatibility with the Eulerian equations 
In  this section, (8) is compared with the true evolution equation for g derived from 
the Eulerian equations. Neglecting molecular diffusion, the Eulerian equations take 
the form 

ac 
-+v'(uEC) at = 0, (15a) 

where DuE/Dt,  the acceleration of a fluid element, is the result of the pressure, viscous 
and external forces (e.g. gravity). (Note no specific form for DuE/Dt is assumed. Of 
course if a form for Du,/Dt were assumed, the resulting equations would contain 
much more information about the flow but would also be, as is well known, very 
intractable. ) 

Equations (15) give rise to an  infinite sequence of equations for the evolution of 
the moments <cu&. . . u g  ), (pu", . . u g  ). By using characteristic functions this infinite 
hierarchy can be expressed more conveniently in two equations. To derive these 
equations we note that (15) implies 
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which, on taking the ensemble average, yields 

Unfortunately no stochastic model of particle motions can produce the evolution 
equation (16a) exactly because (16a) contains terms involving DuE/Dt which cannot 
be determined from 0 and 9,. However it can produce an evolution equation of the 
same form as (16a) with the right-hand side of (16a) being parametrized in terms 
of and &. Comparing (8) and (16a), it can be seen that the parametrization is 

c exp (iu,-O) 8.- 
Dt 

There is only one obvious constraint which (16) imposes on the parametrization, 
although the possibility of other more subtle constraints cannot be ruled out (to be 
completely consistent with (16) there must exist an ensemble of velocity and density 
fields satisfying (15b) for which the model (4) is exact - see $3.6 below). If c = p in 
each realization then = and the right-hand side of (16a) equals the left-hand side 
of (16b). If the parametrization of the right-hand side of (16a) is also to have this 
property, then 

must be satisfied. This is simply the well-mixed condition. If we regard the model 
as being ‘compatible ’ with the Eulerian equations whenever the parametrization 
satisfies (17), then the model is compatible with the Eulerian equations if and only 
if the well-mixed condition is satisfied. 

Of course, out of all conceivable parametrizations of the right-hand side of (16a) 
which satisfy (17), only a small fraction are physically reasonable. It seems likely 
however that a physically plausible model for the particle trajectories will correspond 
to a physically reasonable parametrization. Some examples are discussed in $5 below. 
It is of interest to note that a model of the form (4) contains less parametrization 
than a high-order closure model; high-order closure models require, in addition to 
the parametrization of the Du,/Dt terms, the parametrization of some quantities of 
the form (cufE . . . ug ) that occur in the advection terms. 

From (5) and (16a) it can be seen that in terms of a and B the parametrization 
is 

a a 2  i(c exp(iuE*8)B*-) - - {( - ~ ( d g ) + ~ ( B ” g ) ) e i u ’ ~ d s u  
Dt 

= i81(at(x,uE, t ) c  exp (iuEo8))-8181(Bi’(x,u,,t)c exp(iuE.B)). (18) 

By noting that i(c exp(iuE*8)8*DuE/Dt) is equal to (c) times the average value 
of d exp (iu(t)*e)/dt for particles of tracer at x, It6’s formula can be used to derive 
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(18) directly. Neglecting variations inp, the first two moments of this parametrization 
are given by 

Using the well-mixed condition this can be expressed as 

where a prime denotes the departure of a quantity from its ensemble average. Some 
examples are given in $5.  

3.4. Forward and reverse diffusion 
Consider a fluid element chosen at random from all the fluid elements in the ensemble 
of flows. Let A, be the event ‘at time t the fluid element lies in the phase-space volume 
d3xd3u centred on (x, u )  ’ and let A, be the event ‘at time s the fluid element lies in 
the volume d3y d3u centred on d y ,  u )  ’. The probability of A, and A, both occurring 
is equal to the probability of A, given A, (i.e. p(x,u,tIy,tr,s)d3xd3u) times the 
probability of A, occurring (i.e. gab, u, s) d3y d3u/Sga(z, w, s) d3zd3w). By also evalu- 
ating this with A, and A, reversed and equating the two expressions we obtain 

P(X, u, t I Y, u, 8) 0, S )  = pdy, 0, I x, u, t )  ga(x, t ) *  (19) 

(If jga(z, w, s)d3zd3w, the total mass of fluid, is infinite the above argument fails but 
(19) can still be obtained from the obvious limiting argument.) Assuming t > s, this 
relates the forward transition probability density p(x, u, t I y ,  tr, s) to the reverse 
transition density pdy, u, s I x, u, t) .  By either integrating (19) with respect to u and 
u or by a direct argument analogous to that used to derive (19), we obtain 

P k  t IY, 8) (Pdy, 9)) = Pdy, s I x, t )  (P(X9 t ) ) .  

If p is constant, this is the condition discussed by Egbert & Baker (1984) in the 
context of two-particle models. 

For t > s, p(x, u, t I y ,  tr, s) can be calculated from the model (4) (it is simply the 
p.d.f. of the distribution of fluid elements that commence at @ , u )  at time 8). 

pdy, u, s I x, u, t )  could also be calculated (in principle) from the model by considering 
all trajectories resulting from a well-mixed distribution of particles (i.e. a distribution 
with density function proportional to ga) at time s and then noting the position and 
velocity at time s of those trajectories that pass through (x,u) at time t .  It seems 
reasonable to propose that the value of p obtained should satisfy (19) if the model 
is to be acceptable. In fact it is easy to see that this is equivalent to the well-mixed 
condition. Suppose the well-mixed condition is satisfied and consider all model 
trajectories resulting from a well-mixed distribution of particles at  time s. Then the 
argument leading to (19) applies equally well to the model trajectories and so (19) 
is satisfied. Conversely if (19) is satisfied, the integral of the left-hand side of (19) with 
respect to y and u is proportional to the phase-space density of tracer a t  time t 
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resulting from a well-mixed distribution at time s, and the integral of the right-hand 
side is equal to ga(x, u, t ) .  Hence the well-mixed condition is satisfied. 

It is of some interest to see if there is a way of calculating pdy, t l ,  s I x, u, t ) ,  t > s, 
from the model that is simpler than that given above. For example, if one is only 
interested in ( c )  a t  a particular point resulting from an extended source, it is wasteful 
to calculate many forward trajectories, only a few of which will pass through the 
point. The obvious approach is to try to simulate the motion of particles backwards 
in time. That this is not completely straightforward can be seen by considering two 
situations with different values of ga at t = 0 in which all the fluid elements move 
according to the same stochastic differential equations; the stochastic differential 
equations describing the backward trajectories will be different in the two cases. 

Let us set t’ = - t  and u’ = -u  (for this section only) so that t‘ increases as we go 
back in time and denote the stochastic differential equation that we hope will 
describe the backwards trajectories by 

(204 

dx = U’ dt’. (20b)  

\ 

ddt = a’r dt‘ + lPf dgl, 

To simplify the notation let @(x, u, t )  = (l/ga) a(@g,)/auj. Using (6), (9) and (19) it 
can be seen that pdy, u, 8 I x, u, t )  satisfies 

for t > s, where #, g,, H and Bare evaluated at (y, u, s). The forward transition density 
for our model (20) will be denoted byp’(x, u‘, t’ ( y ,  o’, s’), t’ > 8’. We want this to equal 
the reverse transition density p ( x ,  u, t I y ,  u, s), s > t ,  evaluated at u = -u‘, u = - u’, 
t = - t’,  s = - s’. Hence p’(x,  u‘, t’ I y ,  u’, s’) should satisfy 

for t’ > s’, where 4, ga, H and B are evaluated at (x, -u’, - t ’ ) .  If the model (20) is 
to give rise to this forward Kolmogorov equation then we must have 

with 0, ga, i and b evaluated at (x, -u‘, - t ‘ ) .  Note the two parts of a transform 
differently under time reversal. 

3.5. The small-timescale limit 
Durbin (1983,1984) posed the requirement that a random-walk model should reduce 
to a diffusion-equation model aa the Lagrangian timescale 7 tends to zero. In  this 
section we investigate the relation of this requirement to the well-mixed condition. 

Suppose the shortest time after the release of material at which we are interested 
in the dispersion is T and that the timescale on which conditions change as viewed 
by a particle (due to inhomogeneity or unsteadiness in the turbulence) is 7H. Let us 
choose our unit of time so that min (T, 7H) is of order unity and assume that 7 is small 
compared with unity. Our unit of length is chosen so that the size of a cloud of tracer 
from a point source is of order unity a t  times of order unity after release. In  this 
coordinate system the turbulent energy must be large to make up for the small 

18 PLM 180 
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timescale and so we put g8 = s3f(x, u,  t )  where u = E ( U -  V) and E is a small parameter, 
It is not yet clear how a and B are related to  the Lagrangian timescale. However, 
because the particle velocities are large and rapidly changing, i t  is clear that B must 
be large. In  anticipation of the result we put B = and assume that 4 is of order 
unity or smaller; if B is not of order E - ~  or 4 is larger than go it can be shown, by 
repeating the analysis below with different assumptions about the size of B and 4, 
that the dispersion is not of order unity a t  times of order unity. Of course 4 needa to 
be no larger than O ( E )  in order to satisfy (9b) and in one-dimensional models it cannot 
bo larger than this. The saaling for B can be made plausible by considering diffusion 
in one dimension in homogeneous stationary Gaussian turbulence. Equation (4) can 
then take the form of the Langevin equation (see $ 5 )  for which the diffusivity at times 
t & 7 equals d / B ,  r2 being the one-dimensional equivalent of Vij. E has been defined 
so that cr2 = O(E-2)  and so B must be of order E - ~  if the diffusivity is to be of order 
unity. 

Assuming the model satisfies the well-mixed condition, (5) and (9) yield 

with 4 satisfying 

From $3.1 i t  is clear that  # + O  faster than any power of IuI as 101 + 00. Because there 
is no flux of particles through the phase-space boundary at I u I  = 00 (or alternatively 
from the assumptions about g stated at the end of $2) we have that the integral of 
atg-a(Btjg)/ad over the surface a t  Iu( = 00 is zero. Using (9a),  this becomes 

where dS is an element of the surface a t  I u I  = 00. Also, on physical grounds, we 
require that g/f remains bounded as lul --f 00. 

The reasoning that follows is similar to that used by Schuss (1980, p. 134). Let us 
pose an asymptotic expansion for f and #, namely 

g = go+€gg,+s2g ,+  ..., 4 = #o+E$41+E2#*+ 1 . 1 .  

The leading-order (c2) terms in (21) yield 

with golf bounded, and 

Because a&,/av* = 0, this has a solution go = C(x, t )  f; indeed all solutions are of this 
form. The order-€-' terms in (21) yield 



Selection of stochastic models of particle trajectories in turbulent flows 541 

with g,/f bounded, and 

The solvability condition for g1 is jvif(aC/axi) d3v = 0, which is automatically 
satisfied. The order-k equation becomes 

with g2/f bounded, and 

The solvability condition for g2 is 

where g, is a solution of (22). Hence, by noting that 

g f e v  = (p), a(p)/at+a((p) v)/ax* = o 
h 

and C cc ( c ) / ( p )  to leading order in E, 

where A?' = - j  (ub- Vi)@d3u/(jgadgu), and Gk is a solution of 

with Gk/ga bounded, and 

Although G is not unique, all solutions differ by ga times a vector function of x and 
t which does not affect the value of K. Hence the model reduces to a diffusion-equation 
model. After some algebra it can be shown that K is positive definite and, if #o = 0, 
symmetric. 

Unfortunately it is not always possible to calculate K analytically. However for 
the class of models in which (l/ga)(a(B"'ga)/au5+~:) is a linear function of u- U, 
- Lg5(u'- U) say (i.e. those models for which (I is a linear function of u- U to leading 
order in E) K can be found and is given by h? = (L-1)ikVk5. This class of models 
includes most models proposed to date. K can also be found easily in one-dimensional 
models. In  such models +o is automatically zero and K = I (q2/Bga) du/jga du, where 

U 

!? = J-,(u'- u) 9&, u', t )  du'. 

In Gaussian turbulence this reduces to 

K = J(dga/B) du/Jga due 

We have seen that, if the model satisfies the well-mixed condition, it reduces to 
18-2 
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a diffusion-equation model as the Lagrangian timescale tends to zero. The limit T+O 
is, when rescaled, equivalent to min ( t ,  T ~ )  + a. Hence, in homogeneous stationary 
turbulence (where T~ = m), the model becomes an eddy-diffusion model as t + a .  
Also, if the inhomogeneity or non-stationarity is weak (i.e. T~ % T )  then the model 
is approximately an eddy-diffusion model for t % 7.  However, if the inhomogeneity 
or non-stationarity is stronger (i.e. T~ 5 T ) ,  then it is not clear whether the model 
becomes an eddy-diffusion model at large times or indeed whether it should. 

If (4) reduces to a diffusion-equation model as the timescale tends to zero, then 
the model need not satisfy the well-mixed condition. Durbin (1984) suggested that, 
as well as reducing to a diffusion-equation model as T + O ,  a random-walk model 
should give the correct variance for the particle velocities in homogeneous stationary 
turbulence. However this is insufficient to ensure that the well-mixed condition is 
satisfied and, strictly speaking, implies nothing about the behaviour of the model in 
more general conditions. Hence we see that requiring the model to reduce to a 
diffusion equation model as 7 + O  is a weaker condition than the well-mixed condition. 

3.6. Discussion 
It has been shown that four out of the five criteria are equivalent and that the fifth 
criterion is satisfied if any of the others are. In  retrospect the equivalence of so many 
of the criteria is not so surprising; all four of the equivalent criteria demand that some 
aspect of the model is consistent with the assumed form of ga, and so the criteria are 
all of a similar nature. A natural question to ask is: If the well-mixed condition is 
satisfied, is the model completely consistent with the assumed form of ga, in the sense 
that there exists an ensemble of mass-conserving velocity and density fields for which 
(i) the phase-space density of all the fluid elements equals ga, and (ii) the stochastic 
model is exact ? If this is so, then it sheds some light on why the well-mixed condition 
implies the other criteria (if the model is completely consistent with ga then any 
criteria involving ga must automatically be satisfied). In fact the answer is yes. Simply 
set p(x, t )  = d(x-y(t)) Jg, d3xd3u and u,(x, t )  = o(t) ,  where @, 0) is a solution of the 
model (4) with ( y ( O ) ,  u(0 ) )  having p.d.f. ga@, u, O)/jg,(x, u, 0) d3xd3u. The ensemble 
of such fields has the required properties. Although the ensemble is rather unphysical 
(each realization contains only a single particle!) it  is sufficient to explain the 
equivalence of the criteria. 

One would like there to be a more physically sensible ensemble with the right 
properties. It seems likely such an ensemble exists although it is not clear how to 
prove it rigorously. There must exist a physically sensible ensemble of velocity and 
density fields u,(x), p,(x) for which the phase-space density of fluid elements equals 
ga(x,u,s). For each (u,,ps) define an ensemble of velocity and density fields 
u,(x, t ) ,  p(x, t ) ,  t > s, by setting u,(x, s) = u,(x),~(x, 8 )  = p,@) and letting the fluid 
elements move according to the model, the same Wiener process t(t) being used 
for all the fluid elements in any particular member of the ensemble. The ensemble 
formed by superimposing the ensembles formed from each (us, p,) will have the right 
properties although it is not clear if such an ensemble can be defined for all t > s (for 
example there is no guarantee that the velocity fields will not develop singularities). 

If ga is such that p could be constant (i.e. jgad3u independent of x, 
aj uaga d3u/8xi = 0) then one might hope that there exists an ensemble of constant- 
density flows for which the model is exact, but it is not clear if this is so. 



Selection of stochastic models of particle trajectories i n  turbulent Pows 543 

4. The choice of a and B 
It has been shown that all the criteria considered above will be satisfied if the 

well-mixed condition is satisfied, i.e. if a and B satisfy (9a and b). In  one dimension 
(9b) and (10) determine 4 uniquely and only B is left to be determined since a can 
then be found from (9a). In  more than one dimension however, 0 is unique only up 
to the addition of a component that is solenoidal in u-space tmd tends to zero rapidly 
as lul+ 00. To determine a and B some additional considerations are required. For 
the remainder of this paper we assume for simplicity that p is constant. 

4.1. The small-time behaviour of the particles from a point source 
It was seen above that the well-mixed condition ensures that certain aspects of the 
small-time behaviour of particles from an instantaneous point source are correct. 
However it does not ensure the correctness of all aspects of the small-time behaviour. 
As in $3.2, we take the point source to be at (x,, ts ) .  At times ( t - t , )  4 77, where 7,, 

is the Kolmogorov timescale, the Lagrangian structure function 

has the form 
Di5 = (uW.-uV,)) (uW - 4 t 8 ) )  

At larger times with the time lag ( t - t , )  lying in the inertial subrange, Df’ has the 
form 

(23) 

where s is the ensemble-average rate of dissipation of energy and C,  is a universal 
constant which has been estimated experimentally to be 4.0 k 2.0 (Hanna 1981 - our 
C, is Hanna’s 2x2B). In the model (4) the assumption that (x, u) is a Markov process 
means that the model can only describe the particle motions correctly on timescales 
larger than 7,,. Hence we should expect the model to have the form (23) at small times. 
Now at small times (4) implies 

D*j = si*c, s(t - ts) ,  

D” = 2(@) ( t -  t,) + O((t  - t,)’), 

where (B) denotes (B(x,, uE, t , ) ) ,  i.e. ~Bg,d3u/{g,d3u. Hence for accurate results 
at small times we should choose 

2(@9 = si*c,s. (24) 
This was originally suggested by van Dop et al. (1985) in the context of a model in 
which a was a linear function of u. Van Dop et al. found that it was impossible in 
general to ensure that the model structure function had the form (23) at small times 
while also ensuring that the small-time behaviour of the mean and variance of the 
particle velocities was correct. If the mean and variance are correct, their model yields 
a structure function that depends on the inhomogeneity or unsteadiness in the 
turbulence as well as 8. By considering the more general model (4) we have avoided 
this problem. 

It is of interest to calculate the values of xi -xk and (xi - xt) (d - &Tat small times. 
If the model satisfies the well-mixed condition we have, by applying It6’s formula, 

a 
2 ‘(a at a d  4 .“xi = ( u L ) ( t - t , ) + -  -(uk)+-(ui u* ) (t- t ,)’+O((t-t ,)3) (25) 
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and 

Apart from the -$(@) ( t - Q 3  term, which is present because small time in the model 
means that the time lag ( t - t , )  lies in the inertial subrange and not that ( t - t , )  4 T ~ ,  

this is in agreement with the correct behaviour obtained by a Taylor expansion (Hunt 
1985; van Dop et al. 1985). If B satisfies (24) then the term -3(Bi i ) ( t - t s )3  is the 
correct adjustment to the Taylor expansion to account for the fact that ( t - t , )  lies 
in the inertial subrange and is not much less than T~ (Hunt 1985). It is of interest 
to note that models in which u is a linear function of u do not give the correct 
expression for the second moments of x (van Dop et al. 1985). This is connected with 
the inability of such models to satisfy (23) and illustrates again the advantages of 
considering the more general model (4). The higher-order moments of x are also 
consistent with the exact results, although they cannot claim to be necessarily 
correct. This is because the adjustments to the Taylor expansion due to the fact that 
( t - t , )  is not much less than T~ cannot be calculated exactly without making further 
assumptions about the turbulence. 

One way to determine the dependence of a and B on u would be to conduct a 
conditional-release experiment, i.e. an experiment in which tracer is released only if 
the velocity at the source is equal to a particular value, us say. (In practice such an 
experiment would probably be conditional on just  one component of velocity or the 
velocity direction, not the vector velocity.) Then we would have 

I 
-- 
(u6 -Uk) (245 -24;) = 2Bdi(x,, us, t,) ( t  - t,) + O( ( t -  t s ) 2 ) ,  

If the value of us is varied, the dependence of a and B on u could be estimated 
experimentally. Hanna (1979) presented some data in which tetroon trajectories were 
grouped into cases with the same initial velocity, thus providing data similar to those 
that could be obtained from a conditional release. These data are consistent with B 
being independent of u and u depending linearly on u - U. However these forms for 
a and B cannot both be exactly correct in general without violating the well-mixed 
condition. 

Strictly speaking, inertial-subrange theory requires (ut(t) -ut(ts)) (uJ(t) - uj(t,)) to 
be independent of u(ts) for small ( t - t , )  (Monin & Yaglom 1975, p. 359) and i t  follows 
from (27) that B(x, u, t )  should be independent of u. However inertial-subrange theory 
is not exact (Monin & Yaglom 1975, pp. 584-585) and this particular aspect of it is 
likely to be violated if the local instantaneous dissipation rate is correlated with the 
velocity. For example, in a convective boundary layer it seems likely that the 
dissipation is larger in the vigorous updraughts than in the downward-moving air. 

4.2. Weakly inhomogeneous flows 
In flows that are only weakly inhomogeneous or slightly non-stationary (i.e. T~ % T )  

the classical theory of Taylor (1921) and Batchelor (1949) applies for t - t ,  4 T ~ .  It 
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r 
FIQURE 1. Results of numerical calculations of R1' in homogeneous stationary Gausaian 
turbulence with no mean flow and pj = fi where B is the Kronecker delta: -, @' = 8', + = 0;  

4 = 0. In the three examples with + = 0, uz and us do not affect u'; hence these are essentially 
one-dimensional calculations. 

-.-,@ =@,+= ( - u * , U l , O ) g , ;  ---- ,@j = (0.2+(u')')P/1.2,4 = 0; - . - ,BU = cw/(0.2+(u')4), 

follows that, when t - ts  4 rH, the second moments of the spread of the tracer depend 
only on the Lagrangian correlation function, which is defmed by 

Rf'(t) = U"(8)U1j(8+t) / (  v'vj'9 
where u' = u - U, and on V (here, and in all other expressions involving R or 71, defined 
below, the summation convention does not apply). In addition, Pasquill (1974, 
pp. 131-132) has shown that, if the Lagrangian integral timescales are fixed, the 
dispersion is relatively insensitive to the shape of R. It follows that the model should 
be designed so that the Lagrmgian integral timescales ry = +jr (R'l(t) +Hi(t)) dt are 
correct. In order to do this it is necessary to be able to calculate the integral timescales 
of the model. From Batchelor's (1949) theory the timescales of the model are related 
to the model's diffusivity by IP-+€P = 2( VicVj5)!r$f and so the timescales can be 
obtained from the value of K given in $3.5. 

Although the shape of R does not strongly influence the dispersion, it is of interest 
to consider what range of shapes can be obtained from a model of the form (4). Unless 
a is a linear function of u- U it  is not clear how to calculate R analytically, and so 
some numerical calculations were carried out. The details of the calculation procedure 
are given in Appendix B and some examples are shown in figure 1 for the case of 
Gaussian turbulence. The variations in the shape of R caused by varying B are small 
but greater variations can be produced by varying 4. The forms of B and 4 chosen 
have no special significance and were chosen simply to  provide a range of different 
shapes for R. 

4.3. Discussion 
Changing the form of the dependence of a and B on u has been seen to influence some 
of the more subtle aspects of the dispersion as predicted by the model, e.g. the 
dispersion from a conditional release and the shape of the Lagrangian correlogram. 
However, it is not clear whether all the more subtle aspects can be represented 
accurately by adjusting u and B; it may well be that, because the true evolution of 
(x ,u )  is not exactly a Markov process, some aspects can only be represented more 
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accurately at  the expense of the representation of other aspects. In  the absence of 
sufficient data or a theory giving the values of B and #, it is sensible to keep the model 
simple. The simplest choice for B is to choose B to be independent of u. This also 
has the merit of being consistent with inertial-subrange theory. If T~ >> 7 ,  then, in 
view of Pasquill’s result quoted above, B should be chosen so that the integral 
timescales of the model are correct. In  more general conditions (24) offers what is 
perhaps the most rational choice for B. In three-dimensional models a choice also has 
to be made as to the value of #. It is not clear in general what the simplest choice 
for 4 is. Examples are given in the next section. 

5. Examples 
5.1. Gaussian turbulence 

Models of the form (4 )  which satisfy the well-mixed condition or its equivalent have 
been used quite extensively in Gaussian turbulence. In homogeneous stationary 
one-dimensional situations with no mean flow there is the classical Langevin-equation 
model 

This satisfies the well-mixed condition and corresponds to (4) with B = a2/7 and 
a = -u/T. For this model the Lagrangian correlation function is exp ( - t / 7 )  and so 
7 is the Lagrangian integral timescale T ~ .  The first two moments of the Eulerian 
parametrization are 

( c / u q z ) )  = --* (c‘u;) 
7 

As in 93.3 a prime denotes the departure of a quantity from its ensemble average. 
These parametrizations are qualitatively sensible and have been used in high-order 
closure models (Deardorff 1978). Van Dop et al. (1985) suggest that (29b) may 
overestimate the magnitude of <duL(DuE/Dt)’). If a smaller value is deemed 
desirable, it  may be possible to achieve this by allowing B to depend on u. However 
this would also alter the parametrization qualitatively. 

Generalizations of (28)  to more general Gaussian situations have been proposed. 
These models all make the simplifying assumption that B is independent of u. In one 
dimension q5 is determined uniquely by the well-mixed condition 

(30) 
4 - lac2  au i (ao. 
ga 2 ax at 2a2 at 

1 aa2 
(u- U )  +- -(u- U)2, 

2a2 ax +-+- -+ _ _ _ -  

and a = - (B /c2 )  (u - U )  + $/g,. As in the Langevin equation it is useful to write 

In weakly inhomogeneous or slightly non-stationary conditions (i.e. when T Q 7H), 
the arguments in 94.2 show that 7 is equal to the Lagrangian integral timescale T ~ .  

In conditions of stronger inhomogeneity or unsteadiness 7 is not the integral timescale 
but simply a (rather loosely defined) ‘local decorrelation timescale’. This model is 
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essentially that described by Wilson et al. (1983, equation 3“) and Thomson (1984, 
$5). The first two moments of the Eulerian parametrization corresponding to (30) 
and (31) are 

(Cfu&(%)’) = k l ( c f u ~ ) + k Z ( ( c f u ~ ) - ( c f U ~ ) ~ ~ ) ,  

where k,  = ( 1/2a2) (aa2/at + ma2/&) - 1 / ~  and k,  = ( 1/2a2) aa2/az. These equa- 
tions contain terms depending on the inhomogeneity and unsteadiness which are 
absent in (29). It is hard to assess whether these extra terms yield a more accurate 
parametrization than (29). To the author’s knowledge these terms have not been used 
to date in high-order closure parametrizations. 

In more than one dimension there are many possible choices for # of which the 
simplest is 

a is given by a( = -ZP( V-’)IL(uk- Uk)+#/ga. The Eulerian parametrization cor- 
responding to this model is similar to the one-dimensional case and is not presented 
here. The model of Thomson (1986~)  is slightly different to this formulation with # 
taking a slightly more complex form. However in the application of the model 
described by Thomson (1986a) the principal axes of V and B were assumed parallel 
- in these circumstances the model is identical with (32) above. There is no evidence 
that the more complex form for # is of advantage. 

No calculations with these models are presented here; examples can be found in 
the references cited. 

5.2. Skew turbulence 
To the author’s knowledge, no attempt has been made previously to design a model 
of the form (4) that can satisfy the well-mixed condition in non-Gaussian turbulence. 
Here we give a simple one-dimensional example to show that it is possible. The 
example chosen is the problem of vertical diffusion in free-convective conditions and 
so z and w will be used as our one-dimensional coordinates. 

ga will be assumed to take the form 

where v = w / a - s  and s is a parameter which may depend on z. Equation (33) implies 
that ( w E )  = 0 and ( w k )  = a2. To ensure that the third-order velocity moment is 
correct s must be chosen so that 0-%3 = (wk) .  Higher-order velocity moments will 
of course be incorrect in general (if the higher-order moments are of importance to 
the dispersion it will be necessary to consider more general forms for ga such as the 
sum of two Gaussian distributions aa considered by Baerentsen & Berkowicz (1984)). 
Provided Is1 < 1, ga is positive everywhere and, if s = 0, the turbulence is Gaussian. 
Equation (33) was chosen because it is easy to manipulate analytically and depends 
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O3 

w / u  

FIGURE 2. Velocity distributions: ---- , Gaussian curve; - , equation (33); 0 ,  velocity 
distribution from the numerical computation, averaged over the time period between 87 and 107 
after release. 

smoothly on w. It is plotted in figure 2 for s3 = 0.331 (the value that will be used 
in the simulations below). The solution of (9b) for q5 is 

acr a2 a Z  

a c  
a2 

+ @(2s - 3s3) - + f(2 + s2 - s4) --+93u - exp ( - $2). 

B is chosen to be independent of w for simplicity and i t  follows that a is given by 

B ;tA3 -SW’ + (1  -’ 28 )v+s 9 a = -- +-. 
cr f52I9-sw+ 1 Ba 

As in the Gaussian model in $5.1 above, it is convenient to write B = cr2/7. However, 
unlike the Gaussian model, 7 is not the Lagrangian integral timescale even in 
homogeneous stationary turbulence. To test the model a simulation of homogeneous 
stationary skew turbulence (s3 = 0.331) was carried out. The initial velocity distri- 
bution of the tracer particles was Gaussian. The velocity distribution after a time 
87 is shown in figure 2 and is close to that given by (33). 

Consider the free-convective part of a convective surface layer. This is the region 
where neither u* (the friction velocity) nor h (the boundary-layer depth) effect the 
statistical properties of the vertical velocity. In this region, which is found to occupy 
ILI < z < O.lh, the statistical properties of the vertical velocity depend only on the 
buoyancy flux e = u3,/JLkl= w:/h where L is the Monin-Obukhov length, w* is the 
convective velocity scale and k is von KSrman’s constant (Wyngaard, Cot6 & Izumi 
1971 ; Kaimal et al. 1976; Nieuwstadt 1980). The second and third moments of w are 
given by 

where the universal constanb 1.8 and 0.8 are taken from van Dop et al. (1985). On 
dimensional grounds 7 must take the form 

(w2) = 1.8(ez)D, ( w 3 )  = 0.8ez, 
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FIGURE 3. Values of (a) fi and (a) fs from equation (35) and from the random-walk model: -, 
equation (35), a = co ; 0,  random-walk calculation with a = 2.0; H, random-walk calculation with 
a = 1.0; A, random-walk calculation with a = 0.5; +, random-walk calculation with a = 1.0, 
(w3) = 0; A, Willis & DeardorR’s (1976) experimental data, z, = 0.05h; 0, Willis & DeardorR’s 
(1976) experimental data, z, = 0.067h. 

where a is a dimensionless constant. If we regard B as being determined by (24), (34) 
corresponds to 8 being independent of z which is consistent with similarity theory 
(Monin 6 Yaglom 1971, p. 467). 

On dimensional grounds the mean and mean-square displacement of particles from 
an instantaneous point source a t  z = z,, t = 0 are given by 

where t ,  = eit/* and fl and fa are universal functions. At small times, t ,  < 1, the 
behaviour of z--Z, and (~ -2 , )~  can be found from (25) and (26): 

f 2 ( t , )  = 
a 

It is easy to see that (35a and b) cannot both be correct fort, much larger than unity 
without violating the constraint (z- z,)~ 2 (z-  zJ2. This has consequences for ground- 
level sources - if z, = 0, t ,  is infinite for all t > 0 and so (35) cannot be applied. 

Information onfl and f2 for t ,  2 1 can be obtained from the random-walk model. 
The results of the computations are shown in figure 3 and the details of the calculation 
procedure are given in Appendix B. For small t ,  the results show good agreement 
with (35). A t  large t + , f l  andfi  are close to being proportional to t i ,  which implies 
that the mean and mean-square displacements become independent of z, at large t ,  

_ _ _ -  
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1 10 

'* 
FIQURE 4. Comparison of concentrations from the model (averaged over 0 < z < 22,) with observed 
ground-level concentrations from a near-surface release: -, observations (Nieuwstadt 1980); 0, 
random-walk calculation with a = 2.0; ., random-walk calculation with a = 1.0; A, random-walk 
calculation with a = 0.5; +, random-walk calculation with a = 1.0, (UP) = 0. 

and that the dispersion from a ground-level source is well behaved. These forms for 
fl and fa are consistent with the similarity arguments of Yaglom (1972) for a 
ground-level source. The results from the random-walk model could be used to 
estimate the coefficients in Yaglom's formulae for Z and 2; however the values 
obtained will depend on a. The water-tank data of Willis & Deardorff (1976) are also 
shown in figure 3. Data for which Z > 0.3h or (z-z$ > 0.09h2 have been excluded 
since they must be significantly influenced by h. The data are in good agreement with 
the random-walk and with the small-time result (35) (as was also found by van Dop 
et al. 1985 and Hunt 1985) but do not extend to large enough t, to enable a to be 
estimated. A comparison of the ground-level concentrations obtained from the model 
at large t ,  and the observational data analysed by Nieuwstadt (1980) is shown in 
figure 4. The agreement is best for a = 1.0. 

Some of the calculations were repeated with (w3) = 0 (see figures 3 and 4). The 
values of fl and fa obtained are considerably smaller, showing that the dispersion is 
quite sensitive to the skewness. The ground-level concentrations are, however, 
virtually unchanged. It would be of interest to try other forms for ga to see if the 
dispersion is sensitive to higher velocity moments or to details in the shape of ga. 

6. Conclusions 
We have considered models of particle trajectories in which the trajectories in 

(x, u)-space are Markovian, continuous and have the same local structure as a process 
with independent increments. Such processes can be represented as solutions of 
stochastic differential equations of the form (4). This class of models is more general 
than any considered previously, although it excludes processes with non-Gaussian 
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forcing; such models are either ‘non-existent ’ (see $2.3) or have discontinuous 
trajectories . 

Various criteria for determining how such models should be formulated in 
inhomogeneous or non-stationary conditions have been discussed. It has been shown 
that the well-mixed condition is equivalent to: (i) requiring the small-time behaviour 
of the velocity distribution of particles from a point source to be correct; (ii) requiring 
compatibility with the Eulerian equations; and (iii) demanding that the forward and 
reverse probability densities from the model are consistent. This simplifies the 
problem of designing a random-walk model because there is no need to consider more 
than one of these criteria. It has also been found that the well-mixed condition is 
more restrictive than Durbin’s (1984) requirement that the model reduces to a 
diffusion-equation model as the Lagrangian timescale tends to zero. One of the 
advantages of considering the general model (4) is that it can be designed to satisfy 
the above criteria exactly in any situation. The fact that random-walk models can 
be made consistent with so many of the physical constraints gives increased 
confidence in such models. 

If the well-mixed condition is satisfied then the model is consistent with the known 
one-point density-weighted Eulerian statistics of the flow. To determine the model 
uniquely some further assumptions have to be made about the Lagrangian properties 
of the flow. It has been shown how the model can be designed to have the correct 
form of the structure function at small times or, if the flow is only weakly 
inhomogeneous or slightly non-stationary , the correct integral timescales. In  contrast 
to some previous models (van Dop et al. 1985) it is always possible, at small times, 
to ensure that the model’s structure function and the second moments of the cloud’s 
spread are consistent with inertial-subrange theory. 

To illustrate the theory some examples of models based on (4) and some calculations 
of dispersion in free-convective conditions have been presented. 

The author would like to thank Professor P. C. Chatwin for helpful discussions and 
suggestions. 

Appendix A. Gaussian increments 
In  $2.3 it was stated that a continuous Markov process with the same local 

structure aa a process with independent increments can be represented by a stochastic 
differential equation involving a Wiener process. This result follows from the theory 
presented by Gihman & Skorohod (1974, 1975, 1979) but it is appropriate to give an 
outline of the proof here in order to explain the most surprising aspect of the result, 
namely the fact that the infinitesimal increments must be Gaussian. 

Before doing this a few comments on the meaning of ‘the same local structure as 
a process with independent increments ’ are in order. Let us assume (x, u)  is a Markov 
process. The increments of (x, u) depend on the position and velocity of the particle 
which in turn depend on the previous increments. Hence (x, u )  does not form a process 
with independent increments. However, on physical grounds, the properties of the 
increments must depend smoothly on x, u and t ,  and so the process behaves like a 
process with independent increments over short periods of time. To simplify matters 
let us change notation and consider a continuous Markov process X( t )  in an 
m-dimensional real vector space Rm (we are interested particularly in the case m = 6 
with the first three components of X representing the particle’s position and the last 
three the particle’s velocity). Let p ( x ,  t ly ,  s), x , y  E Rm be the density corresponding 
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to the transition probabilities of the process and let q(x, t I y ,  s) = p(x+ y ,  t + s I y ,  s) 
denote the density function of the increment over a time interval [ s , s + t ] .  
Q(0, t I y ,  8) = exp (ix.0) q(x, t I y ,  s) dmx will denote the characteristic function of q. 
If Xwere a stochastically continuous process with stationary independent increments 
we would have Q independent of y and s, and Q(0, t, + t 2 )  = Q(0, t l )  Q(0, t z )  and so 
Q = exp (j(0)t) for some continuousj(0). It follows from this that 

4-1 
j ( 0 )  = Lim- 

L O  t ' 

the limit being uniform in each sphere 101 < M (Gihman & Skorohod 1974, pp. 
153-154). Let us define 'same local structure as a process with independent 
increments' to mean that the limit 

(A 1) 
8-1 

j (O,y ,s)  = Lim- 

exists uniformly in each sphere 101 < M ,  is continuous, and also depends 'smoothly' 
ony and s (this will be made more precise below). It seems very unlikely that processes 
that fail to satisfy this will be physically relevant. In particular the models with 
non-Gaussian forcing that have been proposed (van Dop et aE. (1985) and the limit 
At+O of the model of Thomson (1984)) satisfy this when they 'exist', i.e. when they 
are realizable. It is well known that limits of the form (A 1) which are continuous 
in 0 and uniform in each sphere 101 < M can be written in the form 

t-o t 

j ( 0 ,y ,  S) = ia*0-BtW@+ exp(iz-0)- l - E ) = 1 7 ( d m z , y , s ) ,  
1 +1212 1Zl2 

where a and B are functions of y and s, and 17 is a finite measure given by 
n ( A ,  y ,  s) = fl(A -{O},y, s), the measure Z7' being the weak limit of the measures 

as t + O .  For a proof of this result see e.g. Gihman & Skorohod (1974, pp. 154-157). 
Let us now assume that the continuous Markov process X( t )  has the same local 

structure as a process with independent increments in the sense defined above. Using 
an argument similar to that given by Gihman & Skorohod (1974, p. 188) we shall 
show that, because Xi s  continuous, 17 = 0. Suppose 17 is non-zero for y = yo, s = so. 
Then there exist real numbers ao, yo and So greater than zero such that 

q(x,tIyo,so)dmx>aot forO<t<y, .  
[XI 380 

In  fact we shall assume that there is a neighbourhood N of (yo, so) and real numbers 
a, y and 6 (greater than zero) such that 

c 

q(x, t Iy, s) dmx > at for 0 < t < y, (y, s) E N 
J,xl>8 

(this follows from the assumption that j depends smoothly on y and s). To 
simplify notation, choose the origin of time so that so = 0 and consider trajectories 
starting a t  yo at time so. Because the trajectories are continuous there exists T > 0 
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such that P((X(t) ,  t) E N ,  t E [O,  !Z'l) 2 t ,  where P(A) indicates the probability of 
event A. Now let A ,  = supIX(t,)-X(t,)l, the supremum being taken over all values 
of t ,  and t,  for which Itl-tal < h and t,, t,e[O, r ]  and write t,, = kT/n and 

= IX( tnk) -X( tnk- l ) l .  Then 

p ( A T / n  2 

2 P( sup axn, 2 6) 

2 P(6Xn, 2 6) + P(6Xnl < 8, 6Xn, 3 8) + . . . 
k-1. . .n 

+ P(6Xnk < 6, k = 1 . . .n - I ,  8XnS 3 a) 
2 P(8Xn1 2 6) 

+P(6&1< 6, (X(M, t,J EN) W X , ,  2 81 ax, ,  < 89 (X(t,l)l tnr) EN) 
+. . .+P(8Xn, < 6, (X( tnk) , tn i )EN,  k = l . . .n- l )  

xP(6Xnn 2616Xn,<6,(X(t,,),tn,)~N, k =  l . . .n-1)  

> P(dT/n K 6, (X(tnk), tnk) E N ,  k = 1. * .n) 

and so 

In particular P(A.1, 2 6) does not tend to zero as n --t co, contradicting the continuity 
of X(t) .  Hence l7 = 0. 

The next step is to derive an equation for the transition probabilities p. Because 
X is Markovian p obeys the Chapman-Kolmogorov relation 

for any T satisfying s < r < t .  Writing 

p(x,  t I z ,  r) = p ( x ,  t 18, r )  exp (i0.z) dm8 s 
p(x ,  t I y, S )  = p ( x ,  t I 8, r )  exp (ie-z)p(z, r I y, 8 )  dm8dmz JJ yields 
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and so 

= !@(x, t I 8, r )  exp (i8.y) ( - ia. 8+ B%W) dm8 

It follows that the transition probabilities of our process X are identical with those 
obtained from the stochastic differential equation 

dXi = az dt + bZj dEj, (A 2) 

where b is such that Sgkuk = Bj, and so our process is stochastically equivalent to 
that defined by (A 2). 

Appendix B. Details of the numerical simulations 
The simulations were carried out by replacing the infinitesimal quantities in (4) 

by finite differences. 20000 particles were followed for the simulations shown in figure 
1. For the simulation with B constant and 4 = 0 the result can be calculated 
analytically. A time-step of 0.05 was found to  be sufficiently small to  achieve good 
agreement with the analytic result. The same time-step was used for the other case 
with constant B. For the remaining two simulations in figure 1, At = 0.05 proved 
unsatisfactory but a time-step of 

At = min(*, 005 m) 0.1 

gave results that  appeared realistic. (B 1) ensures that a particle cannot change its 
position in phase space by a large amount in any time-step. 

For the simulations in $5, 10000 particles were followed. The time-step 
At = min (0.05a2/B, O.la/lal), which is just a dimensional version of (B l ) ,  gave good 
results for the homogeneous simulation (figure 2). I n  the inhomogeneous case 
however, a very small time-step, At = min (0.05a2/B, O.la/lal, O.Ola/lwaa/azI), was 
found necessary in order to  achieve results that  agreed with (35) at small times and 
that appeared to  be insensitive to  further reductions in At. This value of At ensures 
that the fractional change in a over a time-step is small. The fact that such a small 
time-step was required suggests that the use of higher-order finite-difference schemes 
may be advantageous. The particles were perfectly reflected a t  the boundary at 
z = 0. 
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